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LETTER TO THE EDITOR 
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Abstract. The single-particle density of states (DOS) is investigakd for a system of localized 
electrons with Coulomb interaction in arandom potential situated on a fractal lattice of the Vicsek 
type with a fractal dimension of two embedded in three-dimensional Euclidean space. To check 
the universality hypothesis of Efros we calculated the DOS numerically and compared it with 
the results for the squm lattice model. We found that the DOS is determined by the geometric 
fractal dimension of the lattice instead of the spectral dimension, which usually determines the 
DOS. In particular, we found that the DOSS of the fractal lattice model and of the square lattice 
model show the same behaviour within the Coulomb gap provided that the ratio between the 
strengths of the random potential and the Coulomb interaction is identical for the two models. 
Thus the universality hypothesis of Efros is found to be valid with respect to different lattice 
S tr U C t we S. 

The behaviour of interacting localized electrons in disordered materials has been investigated 
for several years (Pollak 1970). The main characteristics of such systems are strongly 
influenced by the interplay between the long-range unscreened Coulomb interaction and the 
disorder. After a long controversy, today it is generally accepted (see e.g. Pollak 1992) 
that the single-particle density of states (DOS) is reduced close to the chemical potential 
p. At zero temperature the DOS is expected to vanish at the Fermi energy; it is, however, 
finite at every energy different from the Fermi energy. "@s, there exists a soft gap in the 
DOS, which is callea the Coulomb gap. Several groups have tried to calculate the single- 
particle DOS within the Coulomb gap analytically (Efros and Shklovskii 1975, 1985, Efros 
1976, Davies 1985, Vojta and John 1993, Vojta er al 1993) and numerically (Baranovskii 
et al 1979, Davies et al 1982, 1984, Mobius et al 1992). While the various results agree 
qualitatively, the detailed behaviour of the DOS remains a puzzle. Efros (1976) proposed 
that the DOS follows a universal power law that is independent of both the lattice structure 
and the disorder strength. While the validity of this universality hypothesis is doubtful with 
respect to the disorder strength (Davies et nl 1984, Mobius et al 1992), nobody has so 
far, to the best of our knowledge, systematically investigated the influence of the lattice 
structure. 
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In this paper we study the single-particle DOS of localized and disordered electrons 
on a fractal lattice with fractal (though integer) dimension of two and compare it with 
the DOS of the usual two-dimensional system. The investigations are based on the lattice 
model of the Coulomb glass first proposed by Efros and Shklovskii (1975). It consists 
of strongly localized electrons on the.sites of a lattice, which interact via an unscreened 
Coulomb potential. Quantum hopping terms (i.e. transfer matrix elements) between the sites 
are neglected. The disorder is described by a fluctuating potential at the lattice sites. The 
Hamiltonian of the model is given by 

where the variable ni with the values zero or unity describes the occupation of the site i and 
rij denotes the distance between sites i and j .  The random potentials pi are independent 
identically distributed random variables with the probability distribution W ( M ) .  As is 
generally accepted, the properties of the Coulomb gap do not depend on the exact shape of 
this distribution, provided that it is slowly varying near the chemical potential p. Without 
loss of generality we can therefore use the box distribution 

Since this distribution is symmetric with respect to qi = 0 and each site has been given the 
compensating charge in the interaction terms in (l), the model defined by (1) and (2) is 
particle-hole symmetric. In the c a e  of half filling ( N / 2  electrons on N lattice sites) the 
chemical potential is therefore given by f i  = 0 for all temperatures. 

The single-particle excitation energy ~i (which corresponds to adding one electron to 
the system, leaving the occupation of the other sites unchanged) is defined as usual by 

Because of the interaction terms the excitation energy (3) depends very sensitively on the 
occupation of all sites of the system. The density of states for the single-particle excitations 

is the quantity under consideration in this paper. (.) denotes the thermodynamic average for 
a given configuration of the random potentials. Since the model is particlehole symmetric, 
g(6) is symmetric with respect to the chemical potential ~r. = 0. 

The zero-temperature single-particle DOS of the lattice model (1) on a regular square or 
cubic lattice has been analytically calculated by the self-consistent equation method of Efros 
(1976) and, more recently, by a Bethe-Peierls-Weiss approximation (Vojta et al 1993). A 
detailed analysis of the analytical theories shows that the DOS is determined only by the 
functional behaviour of N ( r ) ,  which gives the number of sites within a hypersphere of 
radius r around a particular lattice site. If N ( r )  scales as ra,  the DOS is asymptotically 
close to the Fermi energy EF given by 

&=(E) - I€ - (5 ) 
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This result suggests that the asymptotic behaviour of the DOS within the Coulomb gap is 
independent of the disorder strength WO and the lattice structure. This behaviour is called 
the universality of the DOS within the Coulomb gap. 

In a hypercubic Euclidean lattice N(r) is for r + CO asymptotically given by 

N(r) = Vd[r/ald (6) 

where d is the (Euclidean) dimension of the lattice, Vd is the volume of the d-dimensional 
unit sphere and a is the lattice constant. In a fractal lattice with a lower cut-off length (i.e. 
lattice constant) uf the number N(r) is given by 

N(r) = Cf[r/ar]" (7) 

where df is the geometric fractal (capacity) dimension (Mandelbrot 1982) of the lattice, 
and the distance r has to be measured in the embedding Euclidean space. (In a regular 
Euclidean lattice d and df are identical.) The proportionality constant Cf depends on the 
detailed structure of the fractal. 

Since N(r) of the fractal lattice and of the Euclidean lattice have the same functional 
form, the DOS for Coulomb glasses on these lattices should asymptotically obey the same 
law. In particular, the DOS for two models on lattices with the same fractal dimension 
df and appropriate lattice constants should show identical asymptotic behaviour. Here 
it is important to note that, according to the analytical theories, the DOS in our system 
is determined by the geometric fractal dimension di and not the spectral dimension d, 
(Alexander and Orbach 1982) as is the case for dynamical processes on fractals (Ramma1 
and Toulouse 1983, Malozemov 1993; for a recent review see the article by Nakayama et 
al (1994)). The reason for this discrepancy is that our system is a purely static one. 
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Figure 1. Construction of the Vicsek fractd (demonstraled by means of the analogon embedded 
in two spatial dimensions with the fractal dimension of dr = In 5/h 3 = 1.465). Fnr the 
simulation we used the analogous fractal embedded in t h e  dimensions. where the basis is 
given by the corners and the centre of a cube. In this c a ~ e  dc =In ¶/In 3 = 2. 

In order to check this special version of the universality hypothesis, we have numerically 
calculated the single-particle DOS of the Coulomb glass (1) on a Vicsek fractal (Vicsek 
1992) embedded in three spatial dimensions. This fractal has a fractal dimension of exactly 
df = 2, therefore the results can be compared to that of a regular square lattice model. 
The construction of the Vicsek fractal is demonstrated by means of a lower-dimensional 
analogon in figure 1. Although the analytical results predict that the DOS in the Coulomb 
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Figure 2. The number N ( r )  of points within a hypersphere of radius r around a particular 
site for the square lattice (I5 = 4 ~ 1 3 )  and for the Vicsek fractal. In the case of the f r a d  
the fluctuations represent the self-similar Stmctwe. Since the lattice sites are not equivalent we 
present the data for two typical cases. The dashed lines show the boundaries Cf = 0.5 and 
Cr = 2.0. 

gap is independent of the ratio between interaction and disorder strength, there is numerical 
evidence that this is not exactly the case (Mobius et al 1992, Pikus and Efros 1994). 
Therefore it is necessary to choose the lattice constants a and af so that the two models 
have the same ratio between interaction and disorder strength. 

To determine the proportionality constant Cf in (7) we have numerically calculated N ( r )  
for a Vicsek fractal of 59 049 sites (five generations of self-similarity) and lattice constant 
uf = 1 and compared it with the corresponding N ( r )  for the square lattice. The result is 
shown in figure 2. Since the fractal lattice is not a homogeneous system, it has density 
fluctuations on all length scales. Consequently, N ( r )  is not a straight line in the log-log 
plot; it fluctuates around an average power law. (In contrast, for the square lattice N ( r )  
fluctuates only for r - 1, where the discrete lattice structure plays a role.) Therefore it is 
difficult to define an exact value of Cf for the Vicsek fractal. However, we determined an 
upper and a lower boundary, which are given by 0.5 < Cf < 2. 

From (6) and (7) one obtains a condition for the ratio a& so that both lattices have 
same (average) N(r ) :  

Uf/U = (cf/vz)"z. (8) 

The boundaries for at are therefore given by 

0.40 w a/& < af < a/m % 0.80. (9) 

We have calculated the zero-temperature single-particle DOS of the Coulomb glasses on 
the square and the fractal lattice by means of the zero-temperature Monte Carlo algorithm 
of Baranovskii et ol (1979), which was also used by Davies et d (1982, 1984) and more 
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recently by Mobius et al (1992). We have taken into account the stability conditions 
with respect to one-particle hops. The width WO of the random potential distribution (2) 
is set to unity in both models. The calculations are carried out with periodic boundary 
conditions applying the minimum-image convention. These boundary conditions are, 
however, appropriately modified for the fractal model by taking into account only those 
of the neighbouring volumes of the central periodicity volume that are occupied according 
to the structure of the fractal lattice (see figure 3). 

Figure 3. Modification of the periodic boundaries for the simulation of the fractal Coulomb 
glms (demonstrated by means of the two-dimensional analogon). Copies of the system are 
placed only on the positions that would be occupied according to the construction mle of the 
fractal. 

Figure 4. The single-panicle DOS for the Coulomb glass on the Vicsek fractal for different 
values of the lattice constant: ay = 112.5 (solid line), af = 112 (dotted line) and q = 1/1.5 
(dashed line). 
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Figure 5. A comparison of the single-p&cle DOS of the Coulomb glasses on the Vicsek fractal 
with at = 0.5 (8) and the square lanice model with ( I  = I (0). The full lines show the power 
law regressions in an energy range from 0.04 to 0.4. 

The resulting DOS of the fractal Coulomb glass of 6561 sites (four generations of self- 
similarity) for different values of the lattice constant ar is presented in figure 4. We have 
averaged over 500 different realizations of the random potential to minimize the statistical 
error. Figure 4 shows that a larger af corresponds to weaker interactions and thus yields a 
narrower Coulomb gap. We empirically found that the fractal Coulomb glass with a lattice 
constant nf = 0.5 yields the same DOS (within the statistical errors) as the square lattice 
model of 10000 sites with a = 1. Figure 5 shows the DOS of these two models within 
the Coulomb gap. The asymptotic behaviour of the DOS can be described by power laws 
with the exponents 1.22 & 0.05 for the square lattice model and 1.19 & 0.05 for the fractal 
model. Below the energy E = 0.04 finite-size effects cause deviations from the pure power 
law behaviour. The exponents found are in good agreement with recent numerical results of 
Mobius et al (1992); they disagree, however, with the analytical prediction (5) of d - 1 = 1 
from the self-consistent equation (Efros 1976) and the BethePeierls-Weiss approximation 
(Vojta et a1 1993). We note that we can also exclude the possibility of the exponent being 
given by ds - 1 since ds is never larger than df (Nakayama et a1 1994) and consequently 
d s - l < l .  

In order to check the lattice size dependence of the exponents we also calculated the 
DOS for a fractal model with 59 049 sites (five generations of self-similarity) and a square 
lattice model with 40000 sites. Within the statistical errors the resulting curves perfectly 
agree with that given in figure 5 and the region of the power law behaviour extends to 
energies down to 0.01. Consequently the exponents of the power laws are unchanged. 

In conclusion, we have compared the Coulomb glass model of disordered and interacting 
electrons on the square lattice and on a Vicsek fractal with a fractal dimension of two in 
order to check the validity of Efros' universality hypothesis with respect to the lattice 
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structure. We found that the single-particle DOS of the fractal Coulomb glass is determined 
by the geomehic fractal dimension of the lattice instead of the spectral dimension. For an 
appropriate choice of the lattice constants the zero-temperature single-particle DOSS of the 
fractal lattice model and of the square lattice model are identical, although they do not obey 
the power law g(e) - &-I found analytically. Thus the universality hypothesis appears to 
he valid with respect to the lattice structure. However, further work is necessary to clarify 
the origin of the value ai = 0.5 for the lattice constant of the fractal and to extend the studies 
to different lattice structures and different disorder strengths. Nonetheless, our results open 
up the possibility of investigating the Coulomb gap for any (broken) dimensionality to obtain 
a deeper understanding of its properties. 

The authors gratefully acknowledge interesting discussions with W John and A Mobius 
(Dresden), M Schreiber (Chemnitz), and U Renner and H Strauss (Leipzig). 
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